Studies on the cytochrome P450 (CYP)-mediated metabolic properties of miocamycin: evaluation of the possibility of a metabolic intermediate complex formation with CYP, and identification of the human CYP isoforms.

نویسندگان

  • M Kasahara
  • H Suzuki
  • I Komiya
چکیده

Some macrolide antibiotics cause clinical drug interactions, resulting in altered metabolism of concomitantly administered drugs, via the formation of a metabolic intermediate (MI) complex with cytochrome P450 (CYP), or competitive inhibition of CYP. In this study, the possibility of MI complex formation by miocamycin (MOM) was assessed first. CYP contents and activities in rat liver microsomes were not affected and there were no detectable MI complexes after administration of MOM for either 3 or 10 days to rats. Furthermore, MOM did not form MI complexes in vitro even with microsomes from humans or dexamethasone-pretreated rats. Second, in vitro studies were conducted to identify the human CYP isoforms involved in four 14-hydroxylation reactions in the MOM metabolic pathway. The results showed that it was most likely CYP3A4 involved in the hydroxylations: 1) each hydroxylation in human liver microsomes from 10 different donors strongly correlated with testosterone 6 beta-hydroxylation; 2) each hydroxylation was essentially inhibited by ketoconazole and troleandomycin; 3) only cDNA-expressed CYP3A4 and CYP3A5 catalyzed the hydroxylations, and the activities of CYP3A5 were below 5% of those of CYP3A4; and 4) the apparent K(M) values obtained with native human liver microsomes were comparable with those obtained with cDNA-expressed CYP3A4. In conclusion, MOM is not an inhibitor of CYP via the formation of an MI complex. Moreover, CYP3A4 is mainly responsible for catalyzing the hydroxylation of MOM metabolites. Because CYP3A4 is the most abundant form of CYP in the liver and intestine, this isoform probably accounts for the majority of drug-MOM interactions observed in clinical practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol.

Previous studies of propofol (2,6-diisopropylphenol) pharmacology have shown that this widely used anaesthetic drug is extensively cleared from the body by conjugation of the parent molecule or its quinol metabolite. On the basis of potential influence of propofol on the metabolism of co-administered agents, many investigators have evaluated the effects of propofol on cytochrome P450 (CYP) acti...

متن کامل

Effects of Cytochrome P450 Inhibition and Induction on the Phenotyping Metrics of the Basel Cocktail: A Randomized Crossover Study

BACKGROUND AND OBJECTIVE Activity of human cytochrome P450 enzymes (CYPs) shows high inter-and intra-individual variability, which is determined by genetic and non-genetic factors. Using a combination of CYP-specific probe drugs, phenotyping cocktails allow simultaneous assessment of the activity of different CYP isoforms. The objective of this study was to characterize the phenotyping metrics ...

متن کامل

Cytochrome P450-mediated metabolism of estrogens and its regulation in human.

Estrogens are eliminated from the body by metabolic conversion to estrogenically inactive metabolites that are excreted in the urine and/or feces. The first step in the metabolism of estrogens is the hydroxylation catalyzed by cytochrome P450 (CYP) enzymes. Since most CYP isoforms are abundantly expressed in liver, the metabolism of estrogens mainly occurs in the liver. A major metabolite of es...

متن کامل

Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements

Cytochrome P450 (CYP) enzymes play key roles in drug metabolism and adverse drug-drug interactions. Despite tremendous efforts in the past decades, essential questions regarding the function and activity of CYPs remain unanswered. Here, we used a combination of sequence-based co-evolutionary analysis and structure-based anisotropic thermal diffusion (ATD) molecular dynamics simulations to detec...

متن کامل

TRAM-34, a Putatively Selective Blocker of Intermediate-Conductance, Calcium-Activated Potassium Channels, Inhibits Cytochrome P450 Activity

TRAM-34, a clotrimazole analog characterized as a potent and selective inhibitor of intermediate-conductance, calcium-activated K(+) (IKCa) channels, has been used extensively in vitro and in vivo to study the biological roles of these channels. The major advantage of TRAM-34 over clotrimazole is the reported lack of inhibition of the former drug on cytochrome P450 (CYP) activity. CYPs, a large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2000